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Reconnaissance of Stream Geomorphology, Low
Streamflow, and Stream Temperature in the Mountaintop
Coal-Mining Region, Southern West Virginia, 1999-2000

By Jeffrey B. Wiley, Ronald D. Evaldi, James H. Eychaner, and Douglas B. Chambers

Abstract

The effects of mountaintop removal coal mining
and the valley fills created by this mining method
in southern West Virginia were investigated by
comparing data collected at valley-fill, mined, and
unmined sites. Bed material downstream of
valley-fill sites had a greater number of particles
less than 2 millimeters and a smaller median parti-
cle size than the mined and unmined sites. At the
84™ percentile of sampled data, however, bed
material at each site type had about the same size
particles.

Bankfull cross-sectional areas at a riffle sec-
tion were approximately equal at valley-fill and
unmined sites, but not enough time has passed and
insufficient streamflows since the land was dis-
turbed may have prevented the stream channel at
valley-fill sites from reaching equilibrium. The
90-percent flow durations at valley-fill sites gener-
ally were 6-7 times greater than at unmined sites.
Some valley-fill sites, however, exhibited stream-
flows similar to unmined sites, and some unmined
sites exhibited streamflows similar to valley-fill
sites. Daily streamflows from valley-fill sites gen-
erally are greater than daily streamflows from
unmined sites during periods of low streamflow.
Valley-fill sites have a greater percentage of base-
flow and a lower percentage of flow from storm
runoff than unmined sites. Water temperatures
from a valley-fill site exhibited lower daily fluctua-
tions and seasonal variations than water tempera-
tures from an unmined site.

INTRODUCTION

Increased mechanization of coal mining in West
Virginia in recent decades has led to wider-scale use of
mountaintop-mining techniques to reach coal seams
and the use of valleys to dispose of excess materials,
creating what is known as “valley fills.” Mountaintop
mining with valley fills in the coal-mining region,
southern West Virginia, has changed forested
landscapes with layered sedimentary rocks into grass-
covered landscapes containing poorly sorted rock
fragments with large interconnected spaces. The U.S.
Geological Survey (USGS), in cooperation with the
West Virginia Department of Environmental
Protection, Office of Mining and Reclamation,
investigated the stream geomorphology and measured
the low streamflow and stream temperature from mined
and unmined areas to determine the effects of valley
fills upon streams.

Results of this study will be used to prepare the
Mountaintop Mining/Valley Fill Environmental Impact
Statement (EIS). The Mountaintop Mining/Valley Fill
EIS will assess the policies, guidance, and decision-
making processes of regulatory agencies in order to
minimize any adverse environmental effects from this
mining practice. Preparation of the EIS is a voluntary
effort among the Office of Surface Mining, U.S. Envi-
ronmental Protection Agency, U.S. Army Corps of
Engineers, U.S. Fish and Wildlife, and the West Vir-
ginia Department of Environmental Protection (U.S.
Environmental Protection Agency, 2001).

This report presents comparisons of streambed
materials, stream-channel characteristics, low stream-
flow, and stream temperature among sites with and
without valley fills. A comparison of streambed materi-
als can indicate habitat alteration for stream aquatic
organisms if the particle-size distribution shows an
appreciable change in the number of small particles. A
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comparison of stream-channel characteristics can indi-
cate an increase in peak discharges if bankfull area,
width, and depth increase. A comparison of stream
temperature can indicate possible effects to stream
aquatic organisms if the magnitude of annual fluctua-
tions are reduced. A comparison of low streamflow can
indicate changes in water quantity and alterations in
habitat that can affect the stream aquatic communities.
The study area is in the southern coalfields of West Vir-
ginia, and results of this study may apply to other areas
along the Appalachian Mountains and worldwide with
similar geohydrology.

Description of study area

The study area is in the Appalachian Plateaus
Physiographic Province of southern West Virginia

(fig. 1). It consists of consolidated, mostly
noncarbonate sedimentary rocks that dip gently to the
northwest. Streams have eroded the rocks forming
steep hills with deeply incised valleys that follow a
dendritic pattern and have formed uplifted plateaus
because of resistant layers of sandstone and shale
(Fenneman, 1938; Fenneman and Johnson, 1946; and
U.S. Geological Survey, 1970). Most ground water
flows primarily in bedding-plane separations beneath
valley floors and in slump fractures along the valley
walls (Wyrick and Borchers, 1981). Generally, ground-
water movement is greater laterally than vertically and
decreases with increasing depth to about 100 ft, except
in coal seams where equivalent ground water can move
at depths greater than 200 feet (Harlow and LeCain,
1993). The climate is primarily continental, with mild
summers and cold winters (U.S. Geological Survey,
1991). Mean annual precipitation is about 44 in. (U.S.
Department of Commerce, 1960), and a 24-hour
precipitation intensity of about 2.75 in. falls on the
average of once every two years (U.S. Department of
Commerce, 1961).

Background

The demand for low-sulfur coal increased during the
1990s partly because of efforts to reduce harmful
emissions from coal-fired power plants. This increase
and the application of dragline mining technologies
made it economical to extract low-sulfur coal from the
southern coalfields of West Virginia. The draglines

remove large quantities of material atop and between
the low-sulfur coal seams and deposit the material in
adjacent valleys. The number of mines using dragline
methods has increased affecting the environment.
These effects include alterations in streambed material,
stream-channel characteristics, low streamflow, and
stream temperature.

Many of the changes in the stream environment
that potentially result from mountaintop mining affect
biological communities in these streams. Changes in
sediment transport and deposition, streamflows, and
temperature alter the physical and chemical environ-
ment to which biological communities are adapted.

Deposition of fine-grained sediment often alters
the physical habitat of streams. Changes in the physical
habitat used for feeding, reproduction, and cover affect
biological communities. Although all stream communi-
ties may be affected by habitat change caused by sedi-
mentation, effects to benthic invertebrate and fish
communities have been studied most extensively.

Increases in transport and deposition of fine sedi-
ments decreases the abundance of invertebrates and
invertebrate species (Lemly, 1982; Nutall, 1972). Some
taxa, such as the Heptageniid mayfly Epeorus pleura-
lis, prefer a habitat underneath large rocks in cobble
substrates. Filling of the spaces underneath the large
rocks by fine sediments reduces the availability of this
habitat (Minshall, 1967). Some invertebrates are dis-
placed by the loss of this habitat, and other inverte-
brates must modify behaviors making them more
susceptible to predation (Haro and Brusven, 1994).
Sedimentation can decrease flow through the stream
substrate, decreasing the availability of the stream-sub-
strate habitat, an important refuge for invertebrates
during droughts (Richards and Bacon, 1994). Sedimen-
tation can reduce invertebrate feeding efficiency. Malas
and Wallace (1977) found that sediments can clog the
finely meshed capture nets of the filter feeding caddis-
fly Dolophilodes modesta. Furthermore, sedimentation
can reduce the quality of food resources for the benthic
community (Graham, 1990).

Sedimentation can reduce or eliminate the abun-
dance of fish and fish species because of the sedimenta-
tion effects on the invertebrate communities. Particular
fish species that feed upon benthic macroinvertebrates
and periphyton may be reduced or eliminated because
sedimentation reduces their food sources (Berkman
and Rabeni, 1987). Berkman and Rabeni also found
that particular fish species requiring clean stony or
gravel substrates for spawning may be reduced or elim-
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region of southern West Virginia.

inated because of increased sedimentation. Further-
more, sedimentation can eliminate or reduce deep pool
habitats, a habitat providing cooler waters with
increased stream depth during summer months
(Waters, 1995).

Increases in 90-percent flow duration, the flow
that is exceeded 90-percent of the time, and baseflow,
the portion of flow the stream receives from ground
water, at valley-fill sites can affect benthic invertebrate
communities. Streams with valley fills may flow
throughout the drought season, although before min-
ing, no-flow periods may have been common. During
droughts, invertebrates utilize various drought-survival
strategies enabling them to persist until streamflows
return (Feminella, 1996; Dietrich and Anderson, 2000).
The effects to benthic communities of subtle alterations

in streamflow are uncertain because, other than flood or
drought effects, little attention has been given to study-
ing the effect of changing streamflow in stream ecol-
ogy. Increases in baseflow from valley fills can be
beneficial because of increases in water availability and
waste assimilation. However, increases in baseflow
from valley fills can be detrimental because stream-
flows originating from valley fills can have higher spe-
cific conductance than streamflows originating from
other settings (Green and others, 2000); thus, eliminat-
ing some sensitive species and reducing numbers of
tolerant species (Green and others, 2000).

Water temperature affects all aspects of aquatic
invertebrate physiology and ecology (Allan, 1995).
Timing of crucial life-cycle events such as egg hatch-
ing, emergence, and mating relies on thermal cues
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(Ward and Stanford, 1982). Temperature controls the
growth rate of most species, and interactions among
closely related species may be reduced because differ-
ent responses to temperature segregate the species in
time (Ward and Stanford, 1982). Temperature controls
the feeding efficiency of invertebrate species along a
thermal gradient such that the optimal temperature for
assimilation of food often determines the distribution
of invertebrate species. Furthermore, temperature
changes can increase or decrease algal food production,
thereby affecting all higher levels in the food chain
(Ward and Stanford, 1982). The annual range of tem-
peratures can also affect the invertebrate communities.
An increase in the annual range of temperature, within
limits, can increase the number of invertebrates species
and the abundance of many species in a stream. A
decrease in the annual range of temperature, whether
from natural or human factors, can decrease the
number of species in a stream (Ward and Stanford,
1982).

DATA COLLECTION

Stream geomorphology and low streamflow
measurements were made at a network of 54 small
stream sites with drainage areas of 26 to 1,527 acres
(fig. 2). The 54 sites were chosen from a larger group
of about 120 sites with similar drainage areas. A team
of agencies determined the 120 sites as sample
locations. The 120 sites were located in five basins, and
the sites had an identified land use of either unmined,
mined, or valley fill. Unmined sites were those with no
evidence of previous coal mining in the tributary
watersheds. Mined sites represent watersheds where
coal has been mined but where no valley fills were

constructed. Valley-fill sites were in tributary
watersheds where both previous mining and valley fills
were present. In general, the valley-fill sites represent
recent or larger mining operations, and the mined sites
represent older or smaller operations.

Two sites (station numbers MT67 and MT68B)
were combined to make one of the 54 sites because
particle size could not be measured on the individual
stream reaches (fig. 2b). The subset of 54 sites was
selected throughout four of the five basins where the
USGS had active short-term (data collected for less
than 10 years) streamflow-gaging stations: Unnamed
Tributary to Ballard Fork near Mud (03204205), Spring
Branch near Mud (03204210), and Ballard Fork near
Mud (03204215) in the Upper (upstream of Middle
Fork) Mud River Basin, (fig. 2a); Clear Fork at Whites-
ville (03198350) in the Clear Fork Basin (fig. 2b);
Twentymile Creek at Vaughan (03192200) in the Twen-
tymile Creek Basin (fig. 2¢); and, Spruce Fork at
Sharples (03198690) in the Spruce Fork Basin (fig. 2d).

Continuous streamflow and stream temperature
were measured at two USGS streamflow-gaging sta-
tions in the Upper Mud River Basin, Unnamed Tribu-
tary to Ballard Fork near Mud (03204205) and Spring
Branch near Mud (03204210). Continuous data are col-
lected at time intervals that accurately represent the
changes among individual values. Continuous stream-
flow data were collected at three long-term (data col-
lected for ten years or longer) USGS gaging stations
(fig. 1): Cranberry River near Richwood (03187500),
Clear Fork at Clear Fork (03202750), and East Fork
Twelvepole Creek near Dunlow (03206600).

4 Stream Geomorphology, Low Streamflow, and Stream Temperature, Mountaintop Coal-Mining Region Southern W.Va., 1999-2000
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Geomorphology

Bed material and bankfull channel characteristics were
measured at the 54 sites in the Clear Fork, Upper Mud
River, Spruce Fork, and Twentymile Creek Basins

(fig. 2). Bankfull is the stream stage and discharge that
forms the stream channel. Bankfull discharge
transports the maximum amount of sediments over
time resulting in bankfull-channel characteristics
representative of the watershed (Rosgen, 1996).

Methods described by Wolman (1954) were
modified and used to make a quantitative analysis of
the distribution of particle sizes on the streambed in
this study. The method required measuring the size of
up to 100 particles from each stream. Collecting parti-
cle-size information from multiple cross sections with
a mixture of geomorphic features (such as riffles,
pools, and runs) was desired, but at some sites a pool-
and-riffle pattern was not available or the streams were
too narrow (less than 10 ft). The method presented by
Wolman, therefore, was modified to collect pebbles
from a mixture of geomorphic features on narrow
streams. Streambed-particle sizes were surveyed
between October 25 and November 10, 1999 (table 4,
located at the end of this report) using the following
method:

(1) Begin the pebble count at bankfull elevation
on the left bank at the upstream boundary of the stream
reach and proceed downstream toward the right bank.
Proceed at a 45-degree angle (or less for short reaches)
with a line along the center of streamflow (or center of
channel if the center of streamflow is not apparent) to
the bankfull elevation on the right bank. Proceed down-
stream from right bank to left bank and left bank to
right bank until 60-100 pebbles are collected or until
arriving at the end of the stream reach.

(2) Proceed one step at a time, with each step
constituting a sampling point.

(3) At each step, reach down to the tip of your
boot and, with your finger extended, pick up the first
pebble touched by the extended finger;

(4) To reduce sampling bias, look across and not
down at the channel bottom when taking steps or
retrieving bed material; and,

(5) As you retrieve each pebble, measure the
intermediate axis. If the intermediate axis cannot be
determined easily, measure the long diameter and the
short diameter of the pebble, and determine the average
of the two numbers.

Bankfull channel characteristics were surveyed
between August 31 and November 9, 2000 (table 4). A
cross section was selected in a riffle where effects of
exceptional features such as a large (relative to the
stream size) rock, cliff, or fallen tree were minimal.
The bankfull channel was located using techniques that
include identifying bankfull indicators such as changes
in bank slope, vegetation, and sediments. The maxi-
mum depth, width, and cross-sectional area of the
bankfull channel were determined.

Low streamflow measurements

Discharges at the 54 sites in the Clear Fork, Upper Mud
River, Spruce Fork, and Twentymile Creek Basins

(fig. 2) were measured four times during low
streamflow (table 5, located at the end of this report)
using methods described by Rantz and others, 1982.
The four measurement periods were October 25
through November 10, 1999; June 6-9, 2000; August
16-21, 2000; and August 31 through November 9,
2000.

Continuous streamflow and stream
temperature

The USGS collects continuous streamflow data at
selected locations, provides historic and real-time data
at http://www.usgs.gov/ (real-time data are not
available for all stations), and publishes data annually
(see for example, Ward and others, 2000). Continuous
streamflow data are collected following procedures
described by Rantz and others, 1982. Streamflow data
were collected at two gaging stations where
temperature data also were collected. Streamflow data
necessary to determine reliable low streamflow
statistics for this study required a minimum of 10 years
of unregulated continuous record. Data from
continuous streamflow-gaging stations with drainage
areas approximately equal to those of the 54 sites was
preferred, but no stations were available with 10 years
of record in the current network of gages with drainage
areas as small as the 54 sites. Streamflow-gaging
stations in the study area at the time of this study
(1999-2000) that had been operating for a minimum of
10 years drained much greater areas: Cranberry River
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near Richwood (03187500), 80.4 miZ; Clear Fork at
Clear Fork (03202750), 126 miZ; and, East Fork
Twelvepole Creek near Dunlow (03206600), 38.5 miZ.

Continuous stream temperature was measured at
two USGS streamflow-gaging stations established in
Ballard Fork of the Upper Mud River Basin in Novem-
ber 1999. The two stations are located near two of the
54 sites (fig. 2a). The station Unnamed Tributary to
Ballard Fork near Mud (03202405) is near sample site
MT10B, about 400 feet downstream of a valley fill.
The station Spring Branch near Mud (03202410) is
near sample site MT13, which drains an unmined
basin. Installation of the temperature monitors fol-
lowed manufacturer specifications and procedures
described by Wilde and others (1998).

STREAM GEOMORPHOLOGY

Stream geomorphology was analyzed using
measurements of bed materials and channel
characteristics. Stream geomorphology for unmined,
mined, and valley-fill sites are compared.

Bed material

Bed material data were studied using particle sizes of
the median, 84 percentile, and percentage less than 2
millimeters. The 84! percentile is an arbitrary particle
size equal to two standard deviations larger than the
mean size, assuming a normal distribution. The
particle size of the 84 percentile has been related to
stream roughness, and particles greater than or equal to
the 84 percentile can be considered as large particles
(Leopold and others, 1995). Particle sizes less than 2
millimeters can be considered as small.

The distribution (median, g4th percentile, and
percentage of particles less than 2 millimeters) of parti-
cle sizes among unmined sites located within an indi-
vidual basin are similar (table 4). The distribution of
particle sizes for unmined sites among all basins, how-
ever, may or may not be similar. Particle sizes from
streams draining unmined areas in Spruce Fork and
Clear Fork have a similar distribution, but these parti-
cle-size distributions are different from those of
streams draining unmined areas of both Upper Mud
River and Twentymile Creek. The similar and dissimi-
lar particle-size distributions among basins indicate
that natural factors, such as localized geology and land
slope, may have some affect on particle sizes.

The bed material of mined and unmined sites can
have similar distributions of particle sizes when the
land surface of the mined site is not appreciably dis-
turbed, and the bed material of mined and valley-fill
sites have similar distributions of particle sizes when
the land surface of the mined site is disturbed. For
example, streams at sites MT82, MT83, and MT84
(table 4), located on and tributary to Sycamore Creek in
the Clear Fork Basin, drain areas of approximately the
same size. The land upstream of MT82 and MT84 is
mined. The land upstream of MT83 is unmined. The
percentage of particles less than 2 millimeters at site
MTS2 (mined) is about three times the percentage of
particles less than 2 millimeters at site MT83
(unmined). Additionally, the median particle size at site
MTS82 (mined) is about 100 millimeters smaller than
the median particle size for site MT83 (unmined). Par-
ticle-size distributions at the mined site MT84, how-
ever, are similar to those at the unmined site.

Data for Spruce Fork and Clear Fork were com-
bined on the basis of the assumption that the similar
distributions of particle sizes between the basins indi-
cated that the same natural factors, such as localized
geology and land slope, were affecting the basins. The
combined basins provided 8 unmined sites, 8 mined
sites, and 14 valley-fill sites for further analysis. The
minimum, 75" percentile, median, 25" percentile, and
maximum particle sizes with outliers indicated as hori-
zontal lines are shown in box plots (fig. 3). Particle
sizes less than 2 millimeters are analyzed as equal to 2
millimeters. Valley-fill sites have a greater number of
particles less than 2 millimeters, a smaller median par-
ticle size (11 sites out of the total 14 sites have median
particle sizes less than 2 millimeters), and about the
same 84"-percentile particle size as the mined and
unmined sites (fig. 3). The percentage of particle sizes
less than 2 millimeters increases appreciably at the
valley-fill sites compared to the mined and unmined
sites.

Data for Upper Mud River and Twentymile
Creek were insufficient for analysis similar to that done
with the combination of Spruce Fork and Clear Fork
data. There are a sufficient number of valley fill sites
(8) in the Upper Mud River Basin, but there are no
mined sites and only three unmined sites. A sufficient
number of unmined sites (7) are available in the Twen-
tymile Creek Basin, but only one mined site and three
valley-fill sites are available.

8 Stream Geomorphology, Low Streamflow, and Stream Temperature, Mountaintop Coal-Mining Region Southern W.Va., 1999-2000
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Sites with an increase in the percentage of parti-
cles less than 2 millimeters could return to the particle-
size distributions that were present before the land dis-
turbance. A sediment-load study (Ward and Appel,
1988) in relation to highway construction in southern
West Virginia indicated that sediment loads decreased
after revegetation and stabilization of the disturbed
land. The report also indicated a trend of decreasing
magnitudes of sediment loads, but the time required for
the sediment loads to return to magnitudes of the pre-
construction loads was not measured. Particle-size dis-
tributions measured in this study could follow a similar
trend as the decreasing sediment loads in the previous
report and return to the pre-disturbed distributions.

Channel characteristics

The maximum depth, width, and cross-sectional area of
the bankfull channel at a riffle section were compared
among valley-fill and unmined sites. Mined sites were
not considered in this analysis because there were only
nine, which is an insufficient number of sites to
develop a regression curve. Comparisons among maxi-
mum depths, maximum widths, and drainage areas did
not indicate any difference between valley-fill and
unmined sites. Comparisons among cross-sectional
areas and drainage areas (fig. 4) show the similarity
between the valley-fill and unmined sites. The linear
regression equation for the valley-fill sites

(R-squared = 0.48; standard error = 47 percent) is

100
— ¢] VALLEY-FILL SITE
L a UNMINED SITE
E LINEAR REGRESSION FOR VALLEY-FILL SITES
wmw |- LINEAR REGRESSION FOR UNMINED SITES
< XS-A 0-360 wh
g “Aunmineq =0-388(DA) » where
e X8-A | imined i the bankfull cross-sectional area for unmined
) sites, in square feet; and DA is the drainage area, in acres.
=z Xs-A, =0.379(DA) ***°, where
ﬂ(j XS-Ay, is the bankfull cross-sectional area for a valley fill site,
o in square feet; and DA is the drainage area, in acres.
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Figure 4. Comparisons among bankfull cross-sectional areas and drainage areas for valley-fill
and unmined sites in the coal-mining region of southern West Virginia.

10 Stream Geomorphology, Low Streamflow, and Stream Temperature, Mountaintop Coal-Mining Region Southern W.Va., 1999-2000



XS-Ag = 0.379 (DA) 9385,
where

XS-Agy  is the bankfull cross-sectional area for a
valley-fill site, in square feet;

and
DA is the drainage area, in acres.

The linear regression equation for the unmined sites
(R-squared = 0.27; standard error = 54 percent) is

XS-Aunmined = 0.388 (DA) 0360,
where

XS-Aunmined 18 the bankfull cross-sectional area
for unmined sites, in square feet;

and

DA is the drainage area, in acres.

The approximately equal bankfull cross-sec-
tional areas of valley-fill and unmined sites suggests
the bankfull discharges between the two groups are
approximately equal. This conclusion may be inaccu-
rate if bankfull indicators are not representative of
land-use changes. Bankfull indicators at valley-fill sites
may be biased toward the pre-disturbed condition (an
unmined condition) if the elapsed time and peak
streamflows since the land was disturbed have been
insufficient to bring the channel (thus, the bankfull
indicators) to equilibrium.

LOW STREAMFLOW CHARACTERISTICS

Low streamflow characteristics were investigated by
comparing 90-percent flow durations (the streamflow
expected to be equalled or exceeded at the site 90
percent of the time), daily streamflow records, base-
streamflows (streamflow from ground-water
discharge), and stormflows (streamflow from over-land
runoff) among all valley-fill and unmined sites.

Ward and others (2000) published the 90-percent
flow durations for the selected continuous streamflow-
gaging stations (table 1). The discharge measurements
made at the 54 sites were compared to concurrent dis-
charges at the continuous streamflow stations. These
data were used to estimate the 90-percent flow duration
at the 54 sites (table 4), using methods described by
Riggs (1972).

Low streamflows in relation to drainage area
were compared among all valley-fill and unmined sites
(fig. 5). Mined sites were not considered in this analy-
sis because only 9 sites were available, which is an
insufficient number of sites to develop a regression
curve. Sites with 90-percent flow durations of no
streamflow were omitted (six sites), because the data
were logo transformed. The valley-fill sites can have
about a 6-7 times greater 90-percent flow duration than
unmined sites (fig. 5). The linear regression equation
for the valley-fill sites (R-squared = 0.60; standard
error = 115 percent) is

Table 1. Low-streamflow statistics at long-term gaging stations in the coal-mining region of southern West Virginia

Station number

Station name

90-percent flow duration, in
cubic feet per second

03187500 Cranberry River near Richwood 16
03202750 Clear Fork at Clear Fork 12
03206600 East Fork Twelvepole Creek near Dunlow 1.3

LOW STREAMFLOW CHARACTERISTICS 11



D90g;; = 0.000161 (DA) 1098,
where
D90gp is the 90-percent flow duration for a
valley-fill site, in cubic feet per second;
and
DA is the drainage area, in acres.

The linear regression equation for the unmined sites
(R-squared = 0.29; standard error = 155 percent) is
D90unmined = 0.0000209 (DA) 1129,

where
D90unmined is the 90-percent flow duration for
an unmined site, in cubic feet per second; and
DA is the drainage area, in acres.

Three of the valley-fill sites (MT74, MT87, and
the combination of MT67 and MT68B) exhibited
90-percent flow durations similar to those of unmined

sites, and three of the unmined sites (MT41, MT92,
and MT97) exhibited 90-percent flow durations similar
to those of valley-fill sites (fig. 5). The site MT41 is on
Oldhouse Branch in the Spruce Fork Basin. Another
site on Oldhouse Branch, MT42, has a larger drainage
area and smaller 90-percent flow duration than MT41.
Field observations indicated some of the streamflow
measurements from MT41 were made where the stre-
ambed was a rock outcrop. These measurements at the
rock outcrop suggest it restricts ground-water flow, and
the outcrop was forcing water to the surface into the
stream. The water forced to the surface and into the
stream may have produced a greater discharge than
typically is at an unmined site with that drainage area.
Other unmined sites that exhibit 90-percent flow dura-
tions similar to 90-percent flow durations from valley-
fill sites may have similar field conditions. This conclu-
sion, however, is speculative and not definitive.

) 1.0
(ZD D90,=0.000161(DA)" %% where
O D90y, is the 90-percent flow duration for a valley fill site, e}
I(.,IJ) in cubic feet per second; and DA is the drainage area, o o
o in acres.
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Figure 5. Comparisons among the 90-percent flow durations and drainage areas for valley-fill
and unmined sites in the coal-mining region of southern West Virginia.
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Valley-fill sites exhibiting 90-percent flow dura-
tions similar to unmined sites suggest the fill is not
retaining water, as is typical of other fills. Water may
not be retained because the fill is relatively small com-
pared to the rest of the drainage area or because of
some difference in the design of the fill, but data col-
lected for this study are insufficient to determine a spe-
cific cause.

Daily streamflows determined for the valley-fill
site, Unnamed Tributary to Ballard Fork near Mud
(03202405), and the unmined site, Spring Branch near
Mud (03202410), for the period December 1999
through November 2000 are presented in tables 2 and
3, respectively. Spring Branch had no streamflow for
several days in October and November, but Unnamed
Tributary to Ballard Fork had streamflow for the entire
period. Greater streamflows may be expected at Spring
Branch than at Unnamed Tributary to Ballard Fork for
these days in October and November because the
drainage area at Spring Branch (0.53 mi?) is 2.8 times
greater than the drainage area at Unnamed Tributary to
Ballard Fork (0.19 mi2). The most probable reason that
streamflow is not greater at Spring Branch than at
Unnamed Tributary to Ballard Fork is because
Unnamed Tributary to Ballard Fork is a valley-fill site,
and the valley-fill sites can have about a 6-7 times
greater 90-percent flow duration than unmined sites
(fig. 5).

The daily streamflow data from Spring Branch
and Unnamed Tributary to Ballard Fork gaging stations
were analyzed using a technique of streamflow parti-
tioning. Streamflow partitioning separates streamflow
data into estimates of base-streamflow and stormflow
components using the Rorabaugh streamflow model
(Rutledge, 1998). For this report, streamflow data were
partitioned for the period December 1999 through
November 2000. The estimated unit-mean base stream-
flow was 0.98 cubic foot per second per square mile of
drainage area [(ft3/s)/mi?] for Unnamed Tributary to
Ballard Fork and 0.42 (ft3/s)/mi? for Spring Branch.
Streamflows were about 84-percent base streamflow
and 16-percent stormflow for Unnamed Tributary to
Ballard Fork, and streamflows were about 59-percent
base streamflow and 41-percent stormflow for Spring

Branch. The most probable reason the unit-mean base
streamflow and percentage of base streamflow are
greater for Unnamed Tributary to Ballard Fork than
Spring Branch is because Unnamed Tributary to Bal-
lard Fork is a valley-fill site, and the valley-fill sites can
have about a 6-7 times greater 90-percent flow duration
than unmined sites (fig. 5).

STREAM TEMPERATURE

Daily water-temperature data measured at Unnamed
Tributary to Ballard Fork near Mud (03202405) and at
Spring Branch near Mud (03202410), for the period
December 1999 through November 2000, are presented
in tables 6 and 7, respectively (located at the end of this
report). The temperature monitor at Unnamed
Tributary to Ballard Fork is approximately 400 ft.
downstream from a valley fill. The daily fluctuations of
temperatures at Unnamed Tributary to Ballard Fork are
less than the daily fluctuations at Spring Branch. The
minimum water temperature observed at Unnamed
Tributary to Ballard Fork was 3.3°C on January 28,
2000, which indicated above freezing conditions. The
minimum water temperature observed at Spring
Branch was —2.4°C on January 28, 2000, which
probably indicated frozen water conditions. The
minimum water temperatures at Unnamed Tributary to
Ballard Fork and Spring Branch differ because water at
Unnamed Tributary to Ballard Fork was mixed with
warmer water discharging from the valley fill. The
water temperature at Unnamed Tributary to Ballard
Fork showed a lesser seasonal range than the seasonal
range observed at Spring Branch. The daily-mean
water temperature at Unnamed Tributary to Ballard
Fork was greater than the daily-mean water
temperature at Spring Branch during winter, and the
daily-mean water temperature at Unnamed Tributary to
Ballard Fork was less than the daily-mean water
temperature at Spring Branch during summer (fig. 6).

STREAM TEMPERATURE 13



Table 2. Daily mean discharges in cubic feet per second, December 1999 through November 2000, at Unnamed Tributary to
Ballard Fork near Mud (03202405) in the coal-mining region of southern West Virginia

[e, estimated; --, no value; Acre-ft, quantity of water required to cover 1 acre to a depth of 1 foot; CFSM, cubic foot per second per square mile; In., depth
to which the drainage area would be covered by the indicated runoff]

Day Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov.

1 0.27 0.26 e0.22 0.31 0.10 0.20 0.28 e0.21 0.20 0.11 0.11 0.12

2 23 25 e.20 .29 .10 .20 25 e.21 .19 12 .10 A1

3 .20 27 e.19 .26 12 .19 22 e.24 .19 11 .10 13

4 .20 31 e.18 .26 32 17 .20 e.27 17 13 .10 .14

5 .19 27 e.17 25 .37 .16 17 e.26 A5 13 .10 A3

6 .20 28 e.17 25 31 15 .16 e.24 15 12 .10 12

7 17 .26 e.17 18 .26 .14 15 22 17 11 .10 12

8 .14 .26 e.16 A5 .30 .14 13 21 23 11 .10 .09

9 .14 25 .16 13 .30 13 12 .19 .34 11 .10 .10

10 17 .26 15 A1 .26 13 11 28 .54 15 .10 .10

11 .18 e.25 17 21 24 13 11 .55 .51 17 .10 .10

12 17 e.24 .16 25 21 1 11 .53 40 .19 .10 .10

13 22 e.23 17 25 .19 13 .10 43 33 .16 .10 .10

14 1.3 e.22 .59 .20 18 .10 .10 41 .26 .14 .10 .10

15 .99 e.21 .53 17 17 .10 11 .52 .24 12 .10 .09

16 .70 e.21 42 .14 15 .10 .10 51 21 11 .10 .09

17 .52 e.21 .32 15 17 .10 21 40 .20 11 .10 .09

18 43 e.21 .59 15 .19 .09 41 .34 .19 A1 11 .09

19 .37 e.21 el.8 15 18 .10 e.4l1 .34 .19 1 11 .09

20 34 e.21 el.l .16 17 .09 e.42 31 18 1 11 .09

21 .30 e.21 7 .20 .19 .10 e.58 31 17 11 11 .09

22 32 e.22 .58 21 22 .09 e.58 28 A5 1 .10 .09

23 34 e.23 48 18 21 11 e.46 25 15 .10 11 .09

24 31 e.24 42 .16 23 .10 e.32 23 15 .10 11 .10

25 31 e.24 .38 13 .35 .09 e.32 22 15 .14 11 .10

26 .30 e.22 .34 13 .39 .09 e.30 21 15 .14 11 .10

27 28 e.20 .35 12 .34 .36 e.28 .19 15 15 12 .10

28 27 e.20 32 .14 .29 .90 e.29 .19 15 13 .14 .10

29 27 e.22 31 13 25 1.2 e.26 .20 A5 A1 .14 .10

30 .26 e.25 -- A1 21 .49 e.23 .19 .14 11 13 .10
31 .26 e.24 -- A1 -- 34 -- .19 13 -- 13 --

Total 10.35 7.34 11.57 5.64 6.97 6.53 7.49 9.13 6.68 3.73 3.35 3.07

Mean 33 24 40 18 23 21 25 .29 22 12 11 .10

Maximum 1.3 31 1.8 31 .39 1.2 .58 .55 .54 .19 .14 .14

Minimum .14 .20 15 A1 .10 .09 .10 .19 13 .10 .10 .09
Acre-ft 21 15 23 11 14 13 15 18 13 7.4 6.6 6.1

CFSM 1.76 1.25 2.10 .96 1.22 1.11 1.31 1.55 1.13 .65 .57 .54

In. 2.03 1.44 2.27 1.10 1.36 1.28 1.47 1.79 1.31 73 .66 .60

Total=81.85 Mean=0.22 Maximum=1.8 Minimum=0.09 Total Acre-ft=162 Total CFSM=1.18 Total In.=16.03
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Table 3. Daily mean discharges in cubic feet per second, December 1999 through November 2000, at Spring Branch near
Mud (03202410) in the coal-mining region of southern West Virginia

[e, estimated; --, no value; Acre-ft, quantity of water required to cover 1 acre to a depth of 1 foot; CFSM, cubic foot per second per square mile; In., depth
in inches to which the drainage area would be covered by the indicated runoff]

Day Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Now.
1 0.13 0.11 0.12 0.35 0.31 0.47 0.25 0.12 0.18 0.09 0.00 0.07
2 13 .10 12 32 31 43 .20 .10 15 .08 .00 .00
3 12 11 A3 .30 e.6 .34 .16 13 A1 .08 .01 .01
4 11 18 15 .29 e3.1 .29 13 17 .10 .09 .01 .02
5 11 .14 14 27 e2.1 .26 12 13 .09 .07 .01 .05
6 12 .14 14 25 el.6 23 .10 11 .08 .08 .01 .07
7 10 .14 15 25 el.l 21 .09 .09 .14 .07 .01 .02
8 .09 .14 .16 .26 el.6 18 .07 .07 .30 .08 .00 .00
9 .09 17 17 .30 el.5 .16 .06 .07 32 .06 .01 .03
10 .20 18 .19 .26 el4 .14 .05 .35 .64 32 .03 .08
11 .16 17 23 .53 el.2 11 .04 .87 33 .10 .00 .03
12 15 15 23 .92 el.l .09 .03 44 24 .03 .01 .02
13 .29 .14 25 .90 e.9 18 .03 .29 .20 .02 .02 .03
14 4.8 12 2.2 .79 .67 11 .04 .39 .16 .02 .03 .04
15 1.1 12 1.4 .66 .60 .08 11 .36 A3 .02 .00 .04
16 .54 13 .95 .64 .53 .07 .06 33 12 .01 .01 .04
17 .37 12 .62 73 .55 .07 .29 28 12 .01 .01 .06
18 .29 12 2.5 .68 .51 .06 .37 22 18 .01 .03 .08
19 24 12 el4 .68 .49 .20 .37 .36 A3 .01 .00 .10
20 22 13 e3.5 74 48 .20 31 .36 12 .01 .01 .10
21 .18 11 el.7 .95 .60 13 1.8 .30 A2 e.01 .01 A1
22 17 .10 el .94 .64 .10 6.3 25 A1 e.01 .01 13
23 15 11 .68 .89 .70 27 1.1 21 A1 e.01 .02 .14
24 .14 11 .59 .76 7 17 48 .20 A3 e.01 .02 17
25 12 .10 49 .66 1.5 13 32 17 .10 e.01 .00 .07
26 13 .10 41 .59 1.8 .10 25 .14 .10 e.01 .01 .04
27 12 .09 43 .54 14 2.6 23 1 .14 e.01 .01 .04
28 12 .08 .38 49 1.0 2.0 25 12 .10 e.01 .01 .04
29 1 .10 .35 41 .76 .88 .20 13 .09 e.01 .01 .05
30 1 15 -- .37 .56 .53 .16 .16 .08 e.01 .03 .08
31 1 13 -- .33 -- .34 -- 12 .08 -- .06 --
Total 10.82 391 33.38 17.05 30.38 11.13  13.97 7.15 5.00 1.36 040 1.76
Mean .35 13 1.15 .55 1.01 .36 47 23 .16 .045 013 .059
Maximum 4.8 18 14 .95 3.1 2.6 6.3 .87 .64 32 .06 17
Minimum .09 .08 12 25 31 .06 .03 .07 .08 .01 .00 .00
Acre-ft 21 7.8 66 34 60 22 28 14 9.9 2.7 .8 3.5
CFSM .66 24 2.17 1.04 1.91 .68 .88 44 .30 .09 .02 A1
In. .76 27 2.34 1.20 2.13 .78 98 .50 .35 .10 .03 12
Total=136.31 Mean=0.37 Maximum=14 Minimum=0.00 Total Acre-ft=270 Total CFSM=0.70 Total In.=9.57
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Figure 6. Daily mean water temperatures, December 1999 through November 2000, at a
valley-fill and an unmined site in the coal-mining region of southern West Virginia.

SUMMARY

Mining coal by removing mountaintops and disposing
of the overburden in valleys, creating valley fills, has
changed the landscape in the coal-mining region of
southern West Virginia and affected stream
geomorphology, low streamflow, and stream
temperatures. The USGS, in cooperation with the West
Virginia Department of Environmental Protection,
Office of Mining and Reclamation, investigated these
mining effects by comparing data collected between
1999 and 2000 in four basins at valley-fill, unmined,
and mined sites. Information from this study will assist
in the preparation of an Environmental Impact
Statement to assess the policies, guidance, and
decision-making processes of regulatory agencies in
order to minimize any adverse environmental effects
from this mining practice.

Particle sizes were measured at 54 small stream
sites in the Clear Fork, Upper Mud River, Spruce Fork,
and Twentymile Creek Basins, using a modification to
the procedure described by Wolman (1954). A compar-
ison of all unmined sites indicated that distribution of
particle sizes can differ among unmined basins. The
different distributions among basins suggests that natu-
ral factors may have some effect over particle sizes.
Valley-fill sites had a greater number of particles less
than 2 millimeters in size, a smaller median particle
size, and about the same 84" percentile particle size, as
compared to the mined and unmined sites.

Bankfull maximum depth, width, and cross-sec-
tional area at a riffle section were measured at the 54
small-stream sites. No differences in the bankfull mea-
surements could be determined between valley-fill and
unmined sites. Bankfull indicators at valley-fill sites
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may not represent the valley-fill condition if there has
not been enough time and if peak streamflows since the
land was disturbed have been insufficient to bring the
channel to equilibrium.

Low streamflows were investigated by compar-
ing 90-percent flow durations, daily streamflow
records, base-streamflows, and stormflows. Generally,
the 90-percent flow durations at valley-fill sites were
6-7 times greater than the 90-percent flow durations at
unmined sites. Some valley-fill sites, however, exhib-
ited 90-percent flow durations similar to unmined sites,
and some unmined sites exhibited 90-percent flow
durations similar to valley-fill sites. Daily streamflows
from valley-fill sites generally are greater than daily
streamflows from unmined sites during periods of low
streamflow. Valley-fill sites have a greater percentage
of base-streamflows and lower percentage of storm-
flows than unmined sites.

Stream temperature was recorded at a valley-fill
site and at an unmined site. Water temperatures from a
valley-fill site exhibited lower daily fluctuations and
lesser seasonal variations than water temperatures from
an unmined site. Water temperatures from the valley-
fill site were warmer in the winter and cooler in the
summer than water temperatures from the unmined
site.
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Table 6. Maximum, minimum, and mean water temperature in degrees Celsius, December 1999 through November 2000, at
Unnamed Tributary to Ballard Fork near Mud (03202405) in the coal-mining region of southern West Virginia

[ --, no value]

December January February March
Day Maxi- Mini- Mean Maxi- Mini- Mean Maxi- Mini- Mean Maxi- Mini- Mean
mum mum mum mum mum mum mum mum
1 - - - 12.5 9.0 10.8 8.2 6.6 7.5 13.7 10.9 12.2
2 - - - 13.3 10.9 12.0 9.0 6.6 7.5 13.3 10.2 11.5
3 - - - 14.1 12.5 13.2 9.8 6.6 8.1 12.1 94 10.6
4 - - - 13.3 9.8 12.2 94 7.8 8.3 13.3 10.2 11.3
5 - - - 10.2 7.0 9.6 9.0 6.6 7.9 144 9.8 114
6 - - - 10.6 8.2 9.1 94 6.6 7.7 15.2 10.2 12.0
7 - - - 10.6 8.6 94 10.6 7.0 8.3 15.6 10.2 12.3
8 - - - 10.9 74 9.2 12.5 6.6 8.1 15.9 10.9 12.9
9 - - - 11.7 94 10.5 10.9 7.0 8.5 15.6 12.0 13.3
10 - - - 12.1 9.8 10.9 11.7 7.8 9.5 144 10.6 12.3
11 - - - 10.9 9.0 10.4 10.9 94 10.4 12.1 10.2 11.4
12 -- -- -- 11.3 8.2 9.7 94 7.8 8.9 11.7 9.7 10.3
13 -- -- -- 11.7 8.6 10.5 11.7 8.2 10.2 12.5 9.0 10.5
14 - - - 8.6 7.0 7.6 11.0 7.8 9.8 14.1 9.8 11.3
15 - - - 10.2 6.6 8.4 12.1 10.6 11.1 15.2 10.2 12.3
16 - - - 11.7 8.6 10.6 13.3 10.6 11.9 13.3 12.1 12.6
17 -- -- - 8.6 7.0 7.8 11.7 9.8 10.8 12.1 94 10.8
18 - - - 8.6 74 8.1 12.9 94 11.6 12.9 8.6 10.5
19 - - - 9.8 8.2 8.7 12.1 94 11.3 13.3 10.6 11.7
20 - - - 8.6 7.0 8.1 12.1 11.7 11.9 12.9 11.3 11.9
21 -- -- -- 74 53 6.5 12.9 10.9 11.6 12.5 10.9 11.8
22 -- -- -- 7.4 4.9 6.3 12.9 10.9 11.9 14.8 10.9 124
23 10.9 94 10.2 94 74 8.5 14.1 12.1 12.9 15.9 10.6 12.6
24 10.2 9.0 9.8 8.6 7.0 8.2 14.1 12.1 13.0 16.7 10.9 13.1
25 94 7.8 8.5 74 53 6.3 15.2 12.1 13.2 16.3 12.5 13.8
26 10.2 8.2 9.5 7.8 6.2 6.8 15.2 12.1 13.3 - - -
27 10.2 94 9.7 6.6 4.1 53 13.7 12.1 13.0 14.1 10.9 12.1
28 94 9.0 9.2 7.0 33 4.8 13.7 10.6 11.7 12.9 10.6 11.3
29 10.6 94 9.7 8.6 49 6.5 14.1 9.8 11.3 15.2 10.2 12.0
30 11.7 94 10.3 8.2 7.0 7.7 -- -- -- 15.6 10.2 12.1
31 11.7 94 10.5 8.2 6.6 7.2 - - - 15.6 94 11.9
Month -- -- -- 14.1 33 8.7 15.2 6.6 10.4 - - -
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Table 6. Maximum, minimum, and mean water temperature in degrees Celsius, December 1999 through November 2000, at
Unnamed Tributary to Ballard Fork near Mud (03202405) in the coal-mining region of southern West Virginia—Continued

[--, no value]
April May June July
Day Maxi- Mini- Mean Maxi- Mini- Mean Maxi- Mini- Mean Maxi- Mini- Mean
mum mum mum mum mum mum mum mum
1 15.9 9.4 12.2 17.4 11.7 13.9 16.7 14.1  15.0 16.7 14.1 15.1
2 14.1 12.5 13.3 17.4 12.5 14.6 17.4 14.1 152 17.1 14.1 152
3 15.6 12.9 13.9 17.8 11.7 14.3 16.3 144 149 17.1 144 154
4 13.3 11.3 12.1 17.1 13.7 14.8 16.7 129 145 16.3 152 15.7
5 14.8 10.9 12.3 17.1 13.3 14.9 17.1 13.7 14.8 159 152 154
6 15.6 11.7 13.2 17.1 13.3 15.0 152 13.7 141 17.1 152 15.5
7 16.7 12.1 13.8 18.6 13.7 15.3 17.1 12.1 141 17.4 14.8 15.7
8 13.3 10.8 12.0 18.2 14.1 15.3 17.4 125 14.6 17.8 14.1 15.5
9 14.1 10.6 11.9 17.8 14.1 15.3 18.2 13.3  15.1 17.8 144 15.7
10 15.6 10.9 12.9 17.1 12.9 14.9 18.2 14.1 155 19.8 15.2 16.6
11 13.3 12.1 12.7 17.4 12.1 14.3 18.6 144 159 18.6 152 16.1
12 12.9 10.6 11.9 - - - 17.8 148 16.0 16.7 15.2 15.6
13 16.3 10.2 12.0 17.4 14.4 154 18.6 14.8 16.1 16.3 14.8 154
14 17.1 10.9 13.3 17.1 12.5 14.2 18.2 14.8 16.1 18.6 14.8 159
15 15.9 12.5 14.0 16.3 11.7 13.5 17.1 14.8 15.7 16.7 14.8 15.7
16 16.3 13.3 14.3 16.7 11.3 13.5 17.8 148 157 16.3 14.8 15.2
17 15.6 12.9 13.8 17.1 13.3 14.4 17.5 152 159 16.7 14.8 154
18 12.9 12.5 12.7 17.8 13.7 15.1 194 152 16.6 16.3 14.8 154
19 15.6 12.1 13.3 15.9 14.4 15.0 16.1 14.8 152 17.1 15.2 15.6
20 15.9 11.7 13.7 15.6 14.4 14.9 159 144 149 16.7 14.8 15.5
21 14.1 11.7 12.9 15.9 14.1 14.7 18.0 144 155 17.1 14.4 15.5
22 12.5 11.7 12.0 16.3 13.7 14.7 20.5 146 16.1 17.1 14.8 15.6
23 16.3 10.9 13.0 17.1 14.1 14.9 15.6 14.1 14.6 16.7 14.4 15.3
24 13.3 11.7 12.6 16.7 14.1 15.1 16.3 144 149 159 14.8 15.3
25 13.7 12.1 12.6 16.7 14.4 15.0 16.3 144 15.0 16.7 144 154
26 15.6 11.3 12.9 16.7 12.5 14.4 16.7 144 152 17.1 14.8 15.7
27 15.9 10.9 12.9 18.2 14.1 15.0 154 14.8 15.0 17.8 14.8 159
28 15.6 11.3 13.1 17.6 14.1 14.8 15.6 14.8 15.0 17.4 152 15.8
29 15.6 12.1 134 14.4 13.7 14.0 16.7 14.8 153 16.7 152 15.8
30 17.1 11.3 13.5 16.3 13.3 14.5 16.7 14.1  15.0 17.1 152 16.0
31 - - - 16.7 13.3 14.6 - - - 17.1 15.6 159
Month 17.1 9.4 12.9 - - - 20.5 12.1 152 19.8 14.1 15.6
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Table 6. Maximum, minimum, and mean water temperature in degrees Celsius, December 1999 through November 2000, at
Unnamed Tributary to Ballard Fork near Mud (03202405) in the coal-mining region of southern West Virginia—Continued

[--, no value]
August September October November
Day Maxi- Mini- Mean Maxi- Mini- Mean Maxi- Mini- Mean Maxi- Mini- Mean
mum mum mum mum mum mum mum mum
1 17.4 15.6 16.1 17.4 15.6 16.2 15.6 129 14.1 13.3 94 10.9
2 17.4 15.2 16.1 17.4 15.6 16.3 18.6 13.3 14.5 14.1 10.2 11.7
3 17.4 15.6 16.2 17.1 159 16.4 17.1 14.4 15.1 14.8 12.5 134
4 16.7 15.6 159 17.1 15.6 16.1 16.7 14.4 15.2 14.1 12.5 13.5
5 17.4 15.2 16.0 16.1 15.6 15.8 17.1 14.4 154 12.5 10.2 114
6 17.1 15.2 16.1 17.1 14.4 15.5 15.6 14.8 15.2 13.3 9.0 10.8
7 18.6 15.6 16.7 17.4 14.4 154 14.8 12.5 13.1 14.8 12.9 13.7
8 19.0 15.6 16.8 16.7 152 15.7 12.9 10.2 11.6 152 12.5 13.7
9 18.2 15.6 16.6 17.4 152 16.1 12.1 10.2 11.3 152 14.1 14.7
10 18.2 15.6 16.5 194 15.6 16.4 13.7 10.6 11.6 14.1 11.7 12.5
11 16.3 15.2 15.6 17.1 159 16.3 14.1 10.2 11.5 12.5 11.3 11.8
12 16.3 14.8 15.3 16.7 15.6 159 144 10.2 11.7 12.5 9.4 10.9
13 16.7 14.4 15.3 17.1 15.6 16.0 144 10.2 11.9 12.9 10.2 114
14 17.1 14.4 154 17.1 152 159 14.8 10.9 12.3 12.5 10.6 114
15 17.1 14.8 15.7 16.1 14.4 15.5 152 12.1 13.2 11.3 9.8 10.5
16 17.4 152 16.0 14.9 12.9 13.9 15.6 12.1  13.6 11.3 9.0 10.1
17 16.3 14.8 15.5 15.6 12.1 13.5 15.6 14.1 14.5 11.7 9.8 10.9
18 16.3 15.6 15.8 15.6 12.9 14.2 15.6 14.1 14.8 9.8 9.0 9.4
19 17.1 15.2 159 16.7 14.1 15.0 14.8 11.7 13.0 9.8 8.6 9.1
20 17.1 14.8 15.8 17.1 14.4 15.3 152 11.3 12.8 9.8 7.8 8.8
21 17.1 14.8 15.7 16.7 14.8 15.5 15.2 129 138 8.6 7.4 8.1
22 17.4 152 16.0 16.3 13.3 14.6 15.9 13.7 145 8.6 5.8 6.8
23 - -- - 17.1 14.8 15.6 159 12.9 14.2 9.4 5.8 7.2
24 16.3 152 15.8 16.3 15.6 15.9 15.6 13.3 143 10.6 6.6 8.0
25 17.1 15.6 16.0 15.9 14.8 15.1 15.6 13.7 14.7 11.7 9.0 10.3
26 17.1 15.2 16.0 14.8 13.7 14.1 16.3 14.4 15.0 11.7 10.9 11.3
27 17.4 15.6 16.2 15.6 12.5 13.8 15.9 13.3 144 11.3 9.4 10.7
28 17.1 15.6 16.1 15.6 12.5 13.8 14.8 13.3 142 10.9 8.6 94
29 17.4 15.2 159 15.9 12.9 14.2 13.7 10.2 11.8 10.9 7.4 8.9
30 17.4 14.8 16.0 15.9 12.9 14.1 12.9 94 109 9.8 9.0 9.2
31 17.4 152 16.1 - - - 13.3 94 108 - - -
Month - - -- 19.4 12.1 15.3 18.6 94 134 15.2 5.8 10.7
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Table 7. Maximum, minimum, and mean water temperature in degrees Celsius, December 1999 through November 2000, at
Spring Branch near Mud (03202410) in the coal-mining region of southern West Virginia

[ - -, no value]

December January February March
Day Maxi- Mini- Mean Maxi- Mini- Mean Maxi- Mini- Mean Maxi- Mini- Mean
mum mum mum mum mum mum mum mum
1 -- -- - 4.5 1.1 2.8 2 -1 0 10.9 5.3 8.2
2 -- -- - 7.0 3.7 5.3 7 -1 1 9.4 5.1 7.2
3 -- -- - 9.4 6.6 8.1 7 -1 2 7.8 33 5.6
4 -- -- - 10.2 4.9 8.6 1.1 2 4 9.8 4.5 6.4
5 -- -- - 4.9 2.0 3.8 1.6 -1 5 10.9 3.7 6.8
6 -- -- - 33 7 1.8 1.1 -1 3 12.5 4.9 8.1
7 -- -- - 37 1.1 2.0 2.8 -1 1.0 13.7 53 9.0
8 -- -- - 2.8 2 1.6 33 -1 1.0 15.2 7.0 104
9 - -- - 53 2.4 3.7 4.5 -1 1.6 14.8 9.4 114
10 -- -- - 7.0 3.7 5.0 53 7 2.9 12.5 7.4 9.8
11 -- -- - 6.2 3.1 4.5 53 3.7 4.8 9.4 7.8 8.6
12 -- -- - 4.5 1.6 32 3.7 2.0 2.9 7.8 4.9 6.3
13 -- -- - 6.2 22 4.8 6.8 2.4 4.6 8.2 3.7 5.8
14 -- -- - 22 2 7 7.0 53 6.4 10.2 4.5 7.0
15 -- -- - 1.8 -1 .6 6.6 4.9 5.4 12.9 6.2 9.0
16 -- -- - 53 1.8 3.7 9.0 53 6.8 10.6 9.0 9.6
17 -- -- - 2.6 2 .8 7.0 4.1 5.5 9.4 4.9 7.1
18 -- -- - 7 2 5 9.0 5.8 7.5 8.6 3.7 6.2
19 -- -- - 2.4 7 14 8.2 5.8 6.7 10.6 6.6 8.2
20 -- -- - 1.1 -1 .8 6.6 5.8 6.0 10.2 8.2 8.9
21 -- -- - -1 -1.0 -5 5.8 53 5.5 9.8 8.2 9.0
22 - - -- -1 -1.4 -.6 7.8 4.9 6.1 12.5 7.4 9.3
23 2.8 7 1.7 -1 -1 -1 10.6 6.6 8.3 14.1 6.6 9.6
24 2.0 2 1.1 2 -1 1 10.9 7.0 8.9 15.2 7.4 10.7
25 7 2 3 -1 -6 -4 13.3 7.8 10.0 15.2 9.8 12.0
26 1.1 2 5 -1 -6 -5 13.7 7.8 10.2 - -- --

27 1.1 2 .8 -6 -1.9 -1.0 10.6 8.8 10.0 11.7 7.8 9.4
28 7 2 .6 -1 24 -1.2 10.6 55 7.7 10.2 7.0 8.0
29 2.0 7 1.0 -1 -1.0 -5 10.6 37 6.6 12.5 6.2 8.5
30 33 2 1.7 2 -1 -1 -- -- -- 13.7 6.2 9.0
31 4.5 1.8 2.7 2 -1 .0 -- -- -- 14.1 53 8.9
Month - - -- 10.2 24 1.9 13.7 -1 4.8 -- -- -
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Table 7. Maximum, minimum, and mean water temperature in degrees Celsius, December 1999 through November 2000, at
Spring Branch near Mud (03202410) in the coal-mining region of southern West Virginia—Continued

[ - -, no value]

April May June July
Day Maxi- Mini- Mean Maxi- Mini- Mean Maxi- Mini- Mean Maxi- Mini- Mean
mum mum mum mum mum mum um mum
1 4.8 4.9 9.3 16.3 9.0 124 18.9 15.5 16.8 - - --
2 12.9 10.6 11.6 17.1 12.5 13.9 15.5 11.6 13.6 - - -
3 15.6 11.3 13.1 17.4 10.2 134 18.6 10.9 14.8 - - -
4 12.1 8.2 10.2 17.4 13.7 15.0 19.8 14.8 16.9 - - --
5 12.5 7.4 94 18.2 13.7 15.6 20.9 15.9 17.7 - - -
6 144 8.6 10.8 15.6 6.2 9.6 20.9 17.1 18.1 - - -
7 16.3 94 12.2 14.1 53 8.9 - - - 19.0 17.4 18.1
8 11.3 7.8 9.8 14.8 4.9 9.3 - - - 17.8 15.6 16.8
9 12.1 6.6 8.8 12.9 10.6 11.6 - - - 18.2 15.9 17.1
10 14.4 7.8 10.5 15.6 11.3 13.1 - - - 20.2 17.4 18.3
11 11.3 94 10.3 12.1 8.6 10.3 - - - 18.6 17.8 18.2
12 - - -- - - - - - - 194 17.4 18.4
13 - - - 19.0 16.7 174 - - - 18.6 17.1 18.0
14 16.7 7.4 11.2 17.3 12.5 14.5 - - - 18.6 17.1 18.0
15 15.9 10.6 12.7 15.2 10.2 12.5 - - - 18.6 16.3 17.8
16 15.9 11.7 13.5 14.8 9.8 12.1 -- -- -- -- -- --
17 15.6 11.7 13.0 15.9 12.5 13.6 -- -- -- -- -- --
18 12.1 10.6 11.1 18.2 14.1 15.3 - - - - - --
19 14.4 10.6 11.6 17.4 15.6 16.3 -- -- -- -- -- --
20 15.9 94 12.6 17.0 15.9 16.2 -- -- -- -- -- --
21 13.7 9.8 11.7 16.7 14.8 15.6 - - - - - --
22 9.8 9.0 9.5 16.3 14.8 15.4 -- -- -- -- -- --
23 15.2 7.8 11.0 16.3 144 152 - - - - - --
24 11.3 9.4 10.6 18.2 14.8 16.1 - - - - - --
25 11.7 10.2 10.7 17.7 16.3 16.8 - - - - - --
26 13.7 8.6 10.7 17.0 12.9 15.0 - - - 19.8 18.6 19.2
27 14.1 7.8 10.6 16.7 14.8 154 - - - 19.0 18.2 18.5
28 13.7 8.6 11.0 15.7 144 14.8 - - - 19.0 17.8 18.3
29 14.1 9.8 11.6 14.8 13.7 14.1 - - - 19.0 18.2 18.6
30 15.6 8.6 11.6 18.2 13.7 154 - - - 20.5 18.6 19.5
31 - - - 194 15.6 17.1 - - - 20.2 19.0 194
Month -- -- - - - - -- -- - -- -- -
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Table 7. Maximum, minimum, and mean water temperature in degrees Celsius, December 1999 through November 2000, at
Spring Branch near Mud (03202410) in the coal-mining region of southern West Virginia—Continued

[ - -, no value]

August September October November
Day Maxi- Mini- Mean Maxi- Mini- Mean Maxi- Mini- Mean Maxi- Mini- Mean
mum mum mum mum mum mum mum mum

1 20.9 19.0 19.9 20.9 18.6 19.2 14.4 14.1 14.2 10.2 8.2 9.2
2 19.8 18.2 19.0 20.5 19.0 19.6 15.9 14.1 14.4 10.9 8.2 94
3 19.4 17.4 18.5 20.5 19.4 19.9 15.6 14.1 14.6 11.7 10.2 10.8
4 18.6 16.7 17.8 20.9 19.4 19.8 15.6 14.1 14.8 11.7 10.9 11.3
5 18.6 17.1 17.7 20.3 18.2 19.0 15.6 14.4 15.0 11.0 8.6 9.5
6 18.6 17.1 17.9 18.6 16.3 17.4 153 14.8 15.1 10.2 7.0 8.4
7 19.0 17.4 18.5 18.6 15.9 16.9 14.8 12.5 13.2 11.3 10.2 10.7
8 19.4 17.1 18.3 18.2 17.1 17.6 12.6 10.6 11.6 12.1 10.6 11.2
9 19.0 17.4 18.5 18.2 17.4 17.9 114 10.2 10.9 12.8 11.7 12.0
10 19.8 18.2 18.9 20.2 17.8 18.2 11.7 10.6 11.0 12.9 9.0 10.6
11 19.4 17.1 18.1 19.1 18.2 18.7 11.7 9.4 10.5 10.2 9.0 94
12 19.0 16.3 17.8 19.0 18.6 18.7 11.7 9.0 10.1 10.2 7.4 8.7
13 19.0 16.7 17.9 19.0 18.2 18.6 11.3 9.0 10.1 10.6 8.2 9.1
14 19.8 17.4 18.4 18.6 17.8 18.1 11.7 9.4 10.3 9.8 8.2 8.9
15 -- -- - 18.6 17.1 17.7 11.7 10.2 10.9 9.0 8.2 8.4
16 -- -- - 17.1 15.6 16.2 12.1 10.6 11.3 9.4 7.8 8.4
17 -- -- - 15.9 14.8 154 12.9 12.1 12.3 9.4 7.4 8.6
18 -- -- - 15.9 15.2 15.5 14.4 12.5 13.5 7.4 7.0 7.2
19 -- -- - 15.9 15.6 15.7 13.0 10.9 11.8 7.8 7.0 7.4
20 -- -- - 15.9 15.2 15.6 12.5 10.6 11.5 7.4 6.6 7.0
21 -- -- - 15.9 15.6 15.7 12.9 11.3 12.0 6.7 5.8 6.3
22 -- -- - 15.6 14.8 15.3 13.3 12.5 12.7 5.8 4.5 5.1
23 -- -- - 15.9 15.6 15.7 13.3 12.1 12.7 6.2 4.5 5.4
24 19.4 18.2 18.7 16.3 159 16.1 13.3 12.5 12.9 7.0 4.9 5.7
25 20.5 18.6 19.2 16.3 14.8 15.8 13.7 12.9 13.3 7.4 6.2 6.6
26 19.9 18.2 19.0 15.2 14.1 14.4 14.1 13.3 13.7 7.0 7.0 7.0
27 20.5 18.2 19.1 14.4 13.3 13.8 14.1 12.9 13.5 7.4 6.2 7.0
28 19.9 18.6 19.1 14.4 13.3 13.8 14.1 12.9 13.5 7.4 53 6.3
29 20.2 17.4 18.5 14.8 13.7 14.1 134 10.6 11.3 7.4 53 6.3
30 19.8 17.4 18.6 14.4 13.7 14.1 10.9 9.0 10.0 6.7 5.8 6.3

31 19.4 18.2 18.8 -- - - 10.6 8.6 9.5 - - -
Month -- -- - 20.9 13.3 16.8 159 8.6 12.3 12.9 4.5 8.3
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